Artificial intelligence (AI) can facilitate personalized experiences shown to impact training outcomes. Trainees and instructors can benefit from AI-enabled adaptive learning, task support, assessment, and learning analytics. Impacting the learning and training benefits of AI are the instructional strategies implemented. The co-learning strategy is the process of learning how to learn with another entity. AI co-learning techniques can encourage social, active, and engaging learning behaviors consistent with constructivist learning theory. While the research on co-learning among humans is extensive, human-AI co-learning needs to be better understood. In a team context, co-learning is intended to support team members by facilitating knowledge sharing and awareness in accomplishing a shared goal. Co-learning can also be considered when humans and AI partner to accomplish related tasks with different end goals. This paper will discuss the design of a human-agent co-learning tool for the United States Air Force (USAF) through the lens of constructivism. It will delineate the contributing factors for effective human-AI co-learning interaction design. A USAF maintenance training use case provides a context for applying the factors. The use case will highlight the initiative of leveraging AI to help close an experience gap in maintenance personnel through more efficient, personalized, and engaging support.
0 Comments
Your comment will be posted after it is approved.
Leave a Reply. |
AuthorsThese posts are written or shared by QIC team members. We find this stuff interesting, exciting, and totally awesome! We hope you do too! Categories
All
Archives
November 2024
|